416 research outputs found

    ltm: An R Package for Latent Variable Modeling and Item Response Analysis

    Get PDF
    The R package ltm has been developed for the analysis of multivariate dichotomous and polytomous data using latent variable models, under the Item Response Theory approach. For dichotomous data the Rasch, the Two-Parameter Logistic, and Birnbaum's Three-Parameter models have been implemented, whereas for polytomous data Semejima's Graded Response model is available. Parameter estimates are obtained under marginal maximum likelihood using the Gauss-Hermite quadrature rule. The capabilities and features of the package are illustrated using two real data examples.

    The R Package JMbayes for Fitting Joint Models for Longitudinal and Time-to-Event Data using MCMC

    Full text link
    Joint models for longitudinal and time-to-event data constitute an attractive modeling framework that has received a lot of interest in the recent years. This paper presents the capabilities of the R package JMbayes for fitting these models under a Bayesian approach using Markon chain Monte Carlo algorithms. JMbayes can fit a wide range of joint models, including among others joint models for continuous and categorical longitudinal responses, and provides several options for modeling the association structure between the two outcomes. In addition, this package can be used to derive dynamic predictions for both outcomes, and offers several tools to validate these predictions in terms of discrimination and calibration. All these features are illustrated using a real data example on patients with primary biliary cirrhosis.Comment: 42 pages, 6 figure

    JM: An R Package for the Joint Modelling of Longitudinal and Time-to-Event Data

    Get PDF
    In longitudinal studies measurements are often collected on different types of outcomes for each subject. These may include several longitudinally measured responses (such as blood values relevant to the medical condition under study) and the time at which an event of particular interest occurs (e.g., death, development of a disease or dropout from the study). These outcomes are often separately analyzed; however, in many instances, a joint modeling approach is either required or may produce a better insight into the mechanisms that underlie the phenomenon under study. In this paper we present the R package JM that fits joint models for longitudinal and time-to-event data.

    The R Package JMbayes for Fitting Joint Models for Longitudinal and Time-to-Event Data Using MCMC

    Get PDF
    Joint models for longitudinal and time-to-event data constitute an attractive modeling framework that has received a lot of interest in the recent years. This paper presents the capabilities of the R package JMbayes for fitting these models under a Bayesian approach using Markov chain Monte Carlo algorithms. JMbayes can fit a wide range of joint models, including among others joint models for continuous and categorical longitudinal responses, and provides several options for modeling the association structure between the two outcomes. In addition, this package can be used to derive dynamic predictions for both outcomes, and offers several tools to validate these predictions in terms of discrimination and calibration. All these features are illustrated using a real data example on patients with primary biliary cirrhosis

    Approximate likelihood inference in generalized linear latent variable models based on integral dimension reduction

    Full text link
    Latent variable models represent a useful tool for the analysis of complex data when the constructs of interest are not observable. A problem related to these models is that the integrals involved in the likelihood function cannot be solved analytically. We propose a computational approach, referred to as Dimension Reduction Method (DRM), that consists of a dimension reduction of the multidimensional integral that makes the computation feasible in situations in which the quadrature based methods are not applicable. We discuss the advantages of DRM compared with other existing approximation procedures in terms of both computational feasibility of the method and asymptotic properties of the resulting estimators.Comment: 28 pages, 3 figures, 7 table

    JM: An R package for the joint modelling of longitudinal and time-to-event data

    Get PDF
    In longitudinal studies measurements are often collected on different types of outcomes for each subject. These may include several longitudinally measured responses (such as blood values relevant to the medical condition under study) and the time at which an event of particular interest occurs (e.g., death, development of a disease or dropout from the study). These outcomes are often separately analyzed; however, in many instances, a joint modeling approach is either required or may produce a better insight into the mechanisms that underlie the phenomenon under study. In this paper we present the R package JM that fits joint models for longitudinal a

    An alternative characterization of MAR in shared parameter models for incomplete longitudinal data and its utili

    Get PDF
    Dropout is a common complication in longitudinal studies, especially since the distinction between missing not at random (MNAR) and missing at random (MAR) dropout is intractable. Consequently, one starts with an analysis that is valid under MAR and then performs a sensitivity analysis by considering MNAR departures from it. To this end, specific classes of joint models, such as pattern-mixture models (PMMs) and selection models (SeMs), have been proposed. On the contrary, shared-parameter models (SPMs) have received less attention, possibly because they do not embody a characterization of MAR. A few approaches to achieve MAR in SPMs exist, but are difficult to implement in existing software. In this article, we focus on SPMs for incomplete longitudinal and time-to-dropout data and propose an alternative characterization of MAR by exploiting the conditional independence assumption, under which outcome and missingness are independent given a set of random effects. By doing so, the censoring distribution can be utilized to cover a wide range of assumptions for the missing data mechanism on the subject-specific level. This approach offers substantial advantages over its counterparts and can be easily implemented in existing software. More specifically, it offers flexibility over the assumption for the missing data generating mechanism that governs dropout by allowing subject-specific perturbations of the censoring distribution, whereas in PMMs and SeMs dropout is considered MNAR strictly

    Optimizing Dynamic Predictions from Joint Models using Super Learning

    Full text link
    Joint models for longitudinal and time-to-event data are often employed to calculate dynamic individualized predictions used in numerous applications of precision medicine. Two components of joint models that influence the accuracy of these predictions are the shape of the longitudinal trajectories and the functional form linking the longitudinal outcome history to the hazard of the event. Finding a single well-specified model that produces accurate predictions for all subjects and follow-up times can be challenging, especially when considering multiple longitudinal outcomes. In this work, we use the concept of super learning and avoid selecting a single model. In particular, we specify a weighted combination of the dynamic predictions calculated from a library of joint models with different specifications. The weights are selected to optimize a predictive accuracy metric using V-fold cross-validation. We use as predictive accuracy measures the expected quadratic prediction error and the expected predictive cross-entropy. In a simulation study, we found that the super learning approach produces results very similar to the Oracle model, which was the model with the best performance in the test datasets. All proposed methodology is implemented in the freely available R package JMbayes2

    Improved Dynamic Predictions from Joint Models of Longitudinal and Survival Data with Time-Varying Effects using P-splines

    Get PDF
    In the field of cardio-thoracic surgery, valve function is monitored over time after surgery. The motivation for our research comes from a study which includes patients who received a human tissue valve in the aortic position. These patients are followed prospectively over time by standardized echocardiographic assessment of valve function. Loss of follow-up could be caused by valve intervention or the death of the patient. One of the main characteristics of the human valve is that its durability is limited. Therefore, it is of interest to obtain a prognostic model in order for the physicians to scan trends in valve function over time and plan their next intervention, accounting for the characteristics of the data. Several authors have focused on deriving predictions under the standard joint modeling of longitudinal and survival data framework that assumes a constant effect for the coefficient that links the longitudinal and survival outcomes. However, in our case this may be a restrictive assumption. Since the valve degenerates, the association between the biomarker with survival may change over time. To improve dynamic predictions we propose a Bayesian joint model that allows a time-varying coefficient to link the longitudinal and the survival processes, using P-splines. We evaluate the performance of the model in terms of discrimination and calibration, while accounting for censoring
    corecore